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A new approximate simulation method for rarefied flows,ν-DSMC, is described
and tested by comparison with results from Bird’s direct simulation Monte–Carlo
(DSMC) method, and with a previously proposed ‘relaxation time’ simulation method
(RTSM) which solves the BGK equation. Bothν-DSMC and RTSM execute about
twice (or more) as fast as DSMC. Inν-DSMC all collision pairs (amongst near neigh-
bours) are equally likely so the collision loops are suitable for parallel execution. In
order to reproduceany desired viscosity lawµ = µ(T) the collision rate must be
altered by making the total collision cross-section a function of the local kinetic
temperature. The approximate methods have been compared to DSMC in three test
cases: (1) simple relaxation calculations, (2) high speed Couette flow, and (3) the
plane normal shock problem. Both approximate methods produce the same relax-
ation rate as DSMC, but only the new method produces a nonequilibrium distribution
function similar to that for DSMC. For the Couette flow,ν-DSMC produces profiles
of flow velocity, density, and temperature which agree with DSMC results to within
3–5%, while the BGK solution produces temperatures which are up to 18% greater.
Similar results were found for the normal shock wave.ν-DSMC predicts the location
and size of the peakTx temperature more accurately than does RTSM. The deviation
of the temperature profiles from the DSMC results are 2–3 times greater for RTSM
than forν-DSMC. The conclusion from all test cases is clear: the incorrect Prandtl
number predicted by the BGK equation detracts from the usefulness of the BGK
equation as a model for rarefied flow; the new approximate simulation method is
just as fast as solving the BGK equation and gives results which are in much better
agreement with DSMC. c© 2001 Academic Press
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1. INTRODUCTION

Bird’s direct simulation Monte–Carlo (DSMC) method [3] is the standard computational
method for rarefied flows, where the governing equation is the Boltzmann equation. In
DSMC the flow is represented by a large number of simulator particles, and the evolution of
the flow is tracked by calculating the motion of these particles and their collisions amongst
themselves and with any boundaries. The simulation is advanced in time steps of duration
1t which, for accuracy, should be less than the mean time between collisions. During each
time step the convection and collision calculations are decoupled. First the particles are
moved in collisionless flight, according to their velocities. Next the particles are frozen in
position and binary collisions are calculated for some of the particles. Although the collision
partners are near neighbours, they are not necessarily within one particle diameter, and
the relative orientation of the trajectories of the collision partners is ignored. Postcollision
velocities are calculated for the given relative speed of collision and a randomly chosen set of
impact parameters. The probability of collision for each collision pair, and the total number
of collisions, reflect the theoretical probability and total collision rate for the particular
collision cross-section used.

The history of the development of phenomenological collision models for DSMC suggests
that not every detail of the collision processes need be modeled accurately in order to obtain
useful results. Recently [10], I proposed a particle simulation method in which the relaxation
time or Bhatnagar-Gross-Krook (BGK) approximation [1] to the collision term in the Boltz-
mann equation was used to simulate the effect of collisions, without calculating any col-
lisions. This relaxation time simulation method (RTSM) is discussed briefly in the next
section, along with similar but not identical methods proposed previously by Nanbu [13,
14] and Montaneroet al. [11]. Although these methods are computationally efficient com-
pared to DSMC, they suffer from the same defect as does the BGK equation itself; the
Prandtl number is unity, whereas the Boltzmann equation yieldsPr = 2/3.

The purpose of this paper is to present a new approximate simulation method for the
Boltzmann equation that produces any desired viscosity law and the correct Prandtl number.
The new method, which I have termed ‘collision frequency DSMC’ orν-DSMC, uses the
particularly simple collision dynamics of the Maxwell–VHS model (that is, a Maxwell
total cross-section with hard sphere scattering) to make it computationally efficient. The
collision rate of the Maxwell–VHS model must be adjusted to produceanydesired viscosity
law.

The new method has been tested and compared to both DSMC and the BGK simulation
method. The test cases considered are (a) a number of zero-dimensional relaxation calcula-
tions, (b) one-dimensional high-speed Couette flow, and (c) the calculation of the internal
structure of a plane normal shock. Bothν-DSMC and RTSM run at twice the speed of
standard DSMC. The new method produces results within 3% of those produced by DSMC
for the shock structure and within 5% for the Couette flow, for Knudsen numbers ranging
from Kn ≈ 0.1 to Kn ≈ 0.005.

2. RELAXATION TIME METHOD

The collision term of the Boltzmann equation describes how the distribution function
f (v, t) for particle velocitiesv should change with timet during the collision phase of a
simulation. According to the relaxation time (BGK) approximation the collision term can
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be approximated as [
∂n f

∂t

]
coll

= nν( fe− f ) = n

τ
( fe− f ), (1)

wheren is the number density of molecules,ν is a characteristic frequency, andτ = ν−1 is
the corresponding characteristic time. The exact solution of (1) is

( f (t ′)− fe) = ( f (0)− fe) exp(−t ′/τ), (2)

where fe is the local Maxwell equilibrium distribution function andf (0) = f (t ′ = 0) is
the distribution of particle velocities established by the convection phase of the simulation,
before the effect of collisions is simulated. In other words, the distribution function relaxes
towards equilibrium with a time constant ofτ , which is the same for all velocities. After a
collision interval oft ′ = 1t , the distribution function according to (2) is

f (1t) = (1− exp(−1t/τ)) fe+ exp(−1t/τ) f (0). (3)

In the relaxation time simulation method (RTSM) the collision phase of DSMC is replaced
by a ‘redistribution phase’ in which a subset of the particles in the cell, a fraction

1− exp(−1t/τ)

of the total, are assigned new velocities characteristic of the local Maxwell distribution
for the subset [10]. The velocities of the remaining fraction of particles are unchanged.
The final distribution of particle velocities is a mixture of the initial distribution in the cell
and a statistical approximation of the final equilibrium distribution and is thus a statistical
(rather than an exact) representation of the BGK distribution of (3). This method has many
features in common with Pullin’s equilibrium particle simulation method [15] in whichall
the particles in the cell were assigned new equilibrium velocities at each time step. Pullin’s
method is the infinite collision rate limit of Bird’s DSMC, or theτ→ 0 limit of the RTSM
method, for a given cell structure and time step.

Nanbu [13, 14] appears to be the first to have proposed a particle simulation method for the
BGK equation. A recent example is that of Montaneroet al.[11]. Both these methods differ
in some respects from RTSM. In each, new equilibrium velocities are assigned to a fraction

ν1t = 1t/τ

of the particles in the cell, rather than the fraction

1− exp(−1t/τ) = 1t/τ − (1t/τ)2/2!+ (1t/τ)3/3!− · · ·

Thus, these methods simulate a collision process (occurring at the collision rateν) in which
the postcollision velocities conform to the local equilibrium distribution; complete equi-
librium is established after one collision/particle (1t = τ ), whereas the BGK equation
indicates that an infinite number of collisions/particle is required to establish equilibrium.

In addition, both the earlier methods differ slightly from RTSM in that the new velocities
are selected from an equilibrium distribution that has a mean and variance matching those
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of the entire set of cell velocities at the beginning of the relaxation phase, rather than the
subset which undergoes a relaxation. At first glance the earlier methods would appear to
be superior in that a larger sample is used to estimate the local equilibrium state, but this is
not entirely clear, because in both methods, after the new velocities are selected, the total
momentum and energy in the cell is not conserved. This nonconservation is accepted as
part of Nanbu’s method, but it is worth noting that it was a similar nonconservation effect
in Nanbu’s simulation method for the Boltzmann equation [12], which appears to produce
greater scatter in the results compared to DSMC, that led to the general abandonment of
Nanbu’s method.

In Montanero’s method [11], the velocities after the relaxation are ‘adjusted’ in order
to preserve total momentum and energy in the cell. It is not clear whether this adjustment
is confined to the new velocities, in which case the method is identical in this respect to
RTSM, or whether all the velocities in the cell are adjusted. If the latter, it is then not clear
that the final velocities after adjustment are a better representation of a mixture of the initial
and equilibrium distributions than the final velocities for RTSM.

The Chapman–Enskog viscosity [6] for the relaxation time approximation isµ = ρRTτ ,
from which

τ = µ

ρRT
= µ

nkT
, (4)

whereR= k/m is the ordinary gas constant,k is Boltzmann’s constant,m is the mass of
one molecule,n is the number density, andρ is the mass density. The appropriate value of
the relaxation timeτ in any cell can be determined fromanydesired viscosity for the local
conditions in the cell. Thus

τ = µ(Tkin)

ρRTkin
, (5)

whereTkin is the local kinetic temperature derived from the total thermal energy in any cell.
This relaxation time is slightly larger than the nominal collision time often derived (via

the nominal mean free path) from viscosity. Thus

λnom= 2µ/(ρc̄) (6)

and

τnom= λ/c̄ = (π/4)µ/(ρRT), (7)

where

c̄ = (8RT/π)
1
2 (8)

is the mean thermal speed at equilibrium.

3. VHS

The most common collision model now used in DSMC calculations is the variable hard
sphere model; the total collision cross-section varies with relative velocity in the same
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manner as for molecules with an inverse power repulsive potential, but the scattering is as
for hard spheres—all directions of the postcollision relative velocity are equally likely. The
first DSMC application of this combination of hard sphere scattering and a variable total
cross-section can be found in the papers of Borgnakke and Larsen [4, 5, 8], and later papers
by Erofeev and Perepukhov [7] and Bird [2]. The total cross-sectionσ for the VHS model,
as a function of relative collision speedg, is

σ(g) = σr (gr /g)
2υ, (9)

wheregr andσr are reference values of the collision speed and total cross-section, respec-
tively, andυ is a constant.

The Chapman–Enskog viscosity, with this total cross-section and isotropic scattering is
[3]

µ = 15

8ϒ4

(mkT)
1
2 (4RT)υ

σr g2υ
r

, (10)

where, for later reference, the notation

ϒ j = 0( j − υ)/π 1
2 (11)

has been used, where0 is the Gamma function. In other words, the viscosity isµ =
µref(T/Tref)

ω, where

ω = 1

2
+ υ. (12)

3.1. Collision Frequency for VHS

The collision frequency for a total cross-sectionσ = σ(g) is given by

νc = n〈gσ 〉,
where〈gσ 〉 denotes the average taken over all collisions. For the VHS cross-section (9) we
have

νVHS= nσr g2υ
r 〈g1−2υ〉. (13)

Bird [3] gives the distribution ofg for equilibrium conditions, and withgr = (4RTe)
1
2 , the

equilibrium collision rate can be evaluated as

νVHS= 2ϒ2n(4RT)
1
2σr . (14)

From (10), also withgr = (4RT)
1
2 , we have

σr = 15

8ϒ4

(mkT)
1
2

µ
(15)

so that (14) becomes

νVHS= 15ϒ2

2ϒ4

ρRT

µ
. (16)
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The probability of collision for each collision pair must be proportional to the collision
volume

gσ(g)1t

so pairs of particles are accepted or rejected for collision based on this probability. This is
particularly time consuming—not only must many collision pairs be sampled before one is
accepted, but the collision loop is not suitable for parallel computation.

A special case is the ‘Maxwell VHS’ collision model, for whichυ = 1/2 in (9), and the
total collision cross-section is

σ = grσr /g.

In this case all collision pairs in a cell are equally likely, so collisions can be calculated
without sampling the distribution of relative velocities. The Maxwell total cross-section,
with hard sphere scattering, forms the basis of the new method proposed here. From
(16), withυ = 1

2, the collision frequency for Maxwell–VHS scattering is

ν = 2
ρRT

µ
. (17)

4. THE PROPOSEDν METHOD

In its basic form, the Maxwell–VHS collision model will produce a viscosity which varies
linearly with temperature (see (10) withυ = 1/2), but by making the reference cross-section
σr a function of kinetic temperature the Maxwell–VHS model can produce any variation of
viscosity with temperature, at least for near equilibrium conditions. The theoretical value
of the Prandtl number isPr = 2/3, as for any VHS collision model.

This modified-VHS method, which I have called ‘collision rate DSMC’ orν-DSMC,
can best be described with the following algorithm for its implementation (some further
programming details are addressed in the Appendix):

• At each time step, calculate the kinetic temperatureTkin in each cell.
• Use (17) to calculate the mean collision frequency as

νc = 2
nkTkin

µ
(18)

for any assumed viscosity law,µ = µ(Tkin).
• If N is the number of particles in the cell, calculate

Ncoll = 1

2
νcN1t (19)

collisions, treating all collision pairs as equally likely. Ifνc1t > 1, some particles must
undergo more than one collision in the time step.

In the next two sections the results from the new simulation method are compared with
the results obtained using DSMC, with standard VHS scattering, and RTSM. In all test
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cases I have assumed a viscosity given by

µ = µref

(
T

Tref

)0.81

, (20)

which corresponds toυ = 0.31. The theoretical viscosities of all models were matched.

5. RELAXATION CALCULATIONS

For five different nonequilibrium distributions of particle velocities in a single ‘cell,’
simulations were performed to determine the relaxation rates of the different models. The
initial conditions are described below. All speeds are expressed in arbitrary units.

1. Half the simulator particles hadvx = 10; the remainder hadvx = −10. Thevy and
vz components were selected from an equilibrium distribution with a mean of 0 and a most
probable thermal speed(2RT)

1
2 = 1/10.

2. As above, expect thatvy, as well asvx, took values of±10.
3. Thevx component of velocity was selected from an equilibrium distribution with a

mean of 0 and a most probable thermal speed of 1/100. Thevy andvz components were
selected from an equilibrium distribution with a mean of 0 and a most probable thermal
speed of 10.

4. Each component of velocity was selected from an equilibrium distribution with a mean
velocity of 0, but with different kinetic temperatures for each component. The characteristic
thermal speeds of the various components were 1, 2, and 4.

5. One fifth of the simulator particles were selected from an equilibrium state with a
mean velocity of(20, 0, 0) and a characteristic thermal speed of 3. The remainder were
selected from an equilibrium distribution with a mean velocity of 0 and a characteristic
thermal speed of 1. This roughly corresponds to a high-speed, high-temperature jet, mixed
with a low-temperature gas at rest.

For each initial nonequilibrium distribution the three components of kinetic temperature
were different. It was found, as expected, that the difference between any two tempera-
tures decayed with simulated elapsed time. Typical temperature histories from a relaxation
simulation are shown in Fig. 1. These curves could be well fit by an equation of the form

Tj − Tk = (Tj − Tk)0 exp(−νnomt/Z),

whereνnom is the nominal collision frequency derived from viscosity,

νnom= 4

π

ρRTe

µ
= 4

π

pe

µ
, (21)

whereTe = (Tx + Ty + Tz)/3 is the equilibrium temperature. The translational collision
number is

Z = νnomtc, (22)

wheretc is the decay time constant. The data in the range 0.5< t̂ < 2.0 was used in the
curve-fitting to determineZ.

For each of the five initial conditions, three estimates ofZ were found, one from each
of the three possible pairingsTx − Ty, Ty − Tz, Tz− Tx. The median value of these three
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FIG. 1. Typical relaxation history. Temperature difference1T̂ = (Tx − Ty)/Te vs simulation timêt = νnomt .
Case 1, 80,000 particles:−, DSMC;×, RTSM;+, ν-DSMC.

estimates was taken as the best estimate ofZ. Each simulation was performed for 20,000
simulator particles and was repeated 10 times. The mean and probable error bounds (taken
as twice the standard deviation) of the 10 simulations are shown in Table I. For RTSM,
the temperature difference should relax with a characteristic timetc = τ , so the theoretical
collision number is

ZRTSM= νnomτ = 4/π = 1.273. . . ,

which is within the error bounds of the data shown in the table.
Both RTSM andν-DSMC agree with the DSMC calculations, as far as the relaxation

rate is concerned; in all cases, theZ values agree within the expected error of two standard
deviations. However, this says nothing about the details of the relaxation process. For
example, the relaxation time method imposes an equally rapid approach to the equilibrium
distribution for all velocity classes, which may not be the case for DSMC andν-DSMC
where new velocities are generated by collisions. Figures 2 and 3 show the thermal speed
distribution for case 5, after an elapsed time of one nominal collision interval. It can be seen

TABLE I

Translational Collision Number Z = νnomtc = 4petc/(πµ)

Case 1 Case 2 Case 3 Case 4 Case 5

DSMC 1.32± 0.07 1.32± 0.10 1.27± 0.14 1.29± 0.06 1.23± 0.10
RTSM 1.28± 0.04 1.29± 0.08 1.27± 0.08 1.29± 0.08 1.28± 0.08
ν-DSMC 1.26± 0.02 1.28± 0.14 1.30± 0.18 1.26± 0.08 1.27± 0.10
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FIG. 2. Thermal speed distribution,(2RTe)
1
2 f vs c(2RTe)

− 1
2 , at t = ν−1

nom: +, ν-DSMC;−, DSMC.

FIG. 3. Thermal speed distribution,(2RTe)
1
2 f vs c(2RTe)

− 1
2 , at t = ν−1

nom: ×, RTSM;−, DSMC.
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that the relaxation time (BGK) distribution is quite different from that for DSMC, whereas
the distribution forν-DSMC is remarkably similar to that for DSMC.

For DSMC, the collisions are weighted towards greater values of collision speed, so each
collision is more effective in driving the distribution function towards equilibrium than
are Maxwell–VHS collisions. However, it follows from (16) and (17) that the simulation
collision frequency (collisions/simulator particle) forν-DSMC is

40(4− 0.31)

150(2− 0.31)
≈ 1.21

times the simulation collision frequency for DSMC. The effect of the greater number of
‘less efficient’ collisions ofν-DSMC is similar to the effect of the smaller number of ‘more
efficient’ collisions of DSMC.

Note that new velocities are generated at rates in the ratio≈0.6 : 1 : 1.2 for RTSM,
DSMC, andν-DSMC. Note also that for both RTSM andν-DSMC every particle velocity
has an equal chance of being altered at any stage, whereas for DSMC larger velocities have
a greater chance of being altered. Therefore, neither the different simulation collision rate,
nor the different distribution of relative velocities in collisions is sufficient to explain the
difference between the BGK relaxation time method andν-DSMC and DSMC; the essential
difference appears to be that the new velocity componentsvx, vy, andvz are correlated when
generated by collisions in DSMC andν-DSMC (and the Boltzmann equation) but are not cor-
related when generated from the equilibrium distribution in RTSM (and the BGK equation).

The CPU time used by RTSM andν-DSMC to calculate the number of collisions required
to simulate a given elapsed time is less than 10% of that taken by DSMC. The effective
speed-up of these approximate methods compared to DSMC, for a given problem, depends
on what fraction of the total CPU time is required to calculate the collisions themselves,
and what is required for other tasks. For example, in these relaxation calculations, the
temperature history was calculated as well as the distribution function, and both RTSM and
ν-DSMC required 27–32% of the CPU time required by DSMC.

6. COUETTE FLOW

The second test case was that of one-dimensional Couette flow between two flat plates
(both parallel to thex-axis) moving relative to each other with relative speedVw. The wall
temperature was held constant atTw. The distance between the plates (in they-direction)
was H . An unsteady simulation was performed, with the gas between the plates initially
at rest with densityρ1 and temperatureT1. After an initial flow development time oft =
10H/(2RT1)

1
2 , successive samples were taken to obtain the time-averaged steady solution.

Only half the flow was simulated. The origin of they-axis was at the plane of skew
symmetry where particles were ‘reflected’ withx andy velocity components reversed. At the
planey = H/2 a diffusely reflecting, moving-wall boundary condition was implemented.
The meanx-component of velocity of the diffusely reflected molecules wasVw/2.

The flow is completely specified by the nondimensional parametersTw/T1 = 1 (the wall
temperature ratio),Sw = Vw/(2RTw)

1
2 = 2.67 (the wall speed ratio), andKn1 = λ1/H (the

Knudsen number), whereλ1 is the nominal mean free path of (6). In all simulations the cell
size was1y < λ1/2. A fixed time step of1t = τ1/4 was used, whereτ1 is the relaxation
time of (4) evaluated for the initial conditions.
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FIG. 4. Couette flowKn = 0.005. Normalized velocity profilesux(∂RTw)
1
2 for three simulation methods:

−, DSMC;×, RTSM;+, ν-DSMC.τ1/1t = 4. 100 cells;λ1/1y = 2. For clarity, only 1/3 of points shown.

Figures 4 and 5 show the normalized velocity and temperature profiles for the three
simulation methods for the lowest Knudsen number reported here, which isKn = 0.005.
The flow velocity (ux) profiles for all methods are similar. The velocities calculated with
ν-DSMC are intermediate between those for DSMC and RTSM. The agreement among the
velocity profiles for the three methods was similar for all Knudsen numbers considered.
The temperature profile is a sensitive indicator of the differences between the methods. The
temperatures forν-DSMC are within 1% of the DSMC values, while those calculated with
RTSM are≈34% greater. Since the work input to the flow is approximately the same for all
three models, the rate of heat transfer from the flow to the moving wall should also be the
same in the steady state. Since the temperature gradient is greater for RTSM, the coefficient
of heat conduction is smaller, as expected from its larger Prandtl number. Figures 6 and 7
show the same effect for Knudsen numbers ofKn = 0.05 andKn = 0.1, respectively. The
ν-DSMC profiles are very close to those for DSMC, while the RTSM temperature profiles
are quite different.

The mean flow temperature for all methods and all Knudsen numbers is shown in Fig. 8.
It is mildly surprising that the maximum difference betweenν-DSMC and DSMC (5% in
the temperature values) occurs for the intermediate Knudsen number ofKn = 0.05, rather
than for the most rarefied case ofKn = 0.1 Also, the difference between the RTSM (BGK)
temperature and the DSMC temperature decreases as the Knudsen number increases.

Although they are not shown here, the density profiles for all methods reflect the different
temperature profiles; the ‘pressure’ρRT was approximately constant to within 3% across
the flow for all cases. The mean values ofρT/(ρ1T1) for DSMC were≈1.60, 1.65, 1.86,
and 2.05 for Kn = 0.005, 0.01, 0.05, and 0.1, respectively. Theν-DSMC pressure was
0.2% greater than the DSMC pressure forKn = 0.005, and it was 3%, 5%, and 3% less
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FIG. 5. Couette flowKn = 0.005. Normalized temperature profilesT/T1 for three simulation methods:
−, DSMC;×, RTSM;+, ν-DSMC. τ1/1t = 4. 100 cells;λ1/1y = 2. For clarity, only 1/3 of points shown.
The average ratio of theν-DSMC temperatures to the DSMC temperatures is 0.99.

FIG. 6. Couette flowKn = 0.05. Normalized temperature profilesT/T1 for three simulation methods:
−, DSMC;×, RTSM;+, ν-DSMC. τ1/1t = 4. 20 cells;λ1/1y = 2. The average ratio of theν-DSMC tem-
peratures to the DSMC temperatures is 0.95± 0.01.
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FIG. 7. Couette flow Kn = 0.1. Normalized temperature profilesT/T1 for three simulation methods:
−, DSMC;×, RTSM;+, ν-DSMC. τ1/1t = 4. 20 cells;λ1/1y = 4. The average ratio of theν-DSMC tem-
peratures to the DSMC temperatures is 0.97± 0.02.

FIG. 8. Mean temperature (̄T/T1) for Couette flow withSw = 5.34, Tw/T1 = 1: o, DSMC;×, RTSM;+,
ν-DSMC.
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FIG. 9. Approach to equilibrium (Tx/T→ 1, mean value for ally) for Couette flow withSw = 5.34,Tw/T1 =
1: o, DSMC;×, RTSM;+, ν-DSMC.

for Kn = 0.01, 0.05 and 0.1. For RTSM, the pressures were larger than for DSMC by 28%,
18%, 13%, and 14%, respectively.

Figure 9 shows the approach to equilibrium for the different methods, as measured by
the average value ofTx/T , across the flow. As expectedTx→ T as the Knudsen num-
ber decreases, for all three methods. The relaxation time method shows a slightly greater
departure from equilibrium than do the other two methods.

The velocity distribution functions in the cell closest to the plane of skew symmetry for
ν-DSMC and DSMC are compared in Figs. 10 and 11. The figures also show the theoretical
equilibrium distribution

fe = (2πRTx)
− 1

2 exp
[−c2

x/(2RTx)
]
,

wherecx = vx − v̄x is the x-component of thermal velocity andTx is the x-component
of kinetic temperature (from the DSMC results). The DSMC results are very close to this
theoretical distribution forKn = 0.01, but a small departure from equilibrium can be seen
for Kn = 0.1. It is clear that the DSMC andν-DSMC results agree very closely for both the
low Kn = 0.01 and highKn = 0.1 Knudsen numbers. AtKn = 0.005, the distributions
for DSMC andν-DSMC (not shown) are virtually indistinguishable.

7. THE PLANE NORMAL SHOCK

As a final test case, the structure of a plane shock has been calculated by DSMC,ν-DSMC,
and RTSM. The upstream Mach number isM1 = 8 and, as in all calculations presented here,
the theoretical viscosity varied asT0.81. The conditions correspond to the test case, ‘strong
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FIG. 10. Distribution of x-component of thermal velocity,(2RT1)
1
2 f vs cx(2RT1)

− 1
2 , wherecx = vx − v̄x

and f (cx) is the thermal velocity distribution function.Kn = 0.01 andy/H = 2.5× 10−3. The solid line is the
theoretical distribution for equilibrium at temperatureTx/T1 = 1.953 (DSMC value). o, DSMC;+, ν-DSMC.

FIG. 11. Distribution of x-component of thermal velocity,(2RT1)
1
2 f vs cx(2RT1)

− 1
2 , wherecx = vx − v̄x

and f (cx) is the thermal velocity distribution function.Kn = 0.1 andy/H = 1.25× 10−2. The solid line is the
theoretical distribution for equilibrium at temperatureTx/T1 = 2.643 (DSMC value). o, DSMC;+, ν-DSMC.
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shock in argon,’ presented by Bird [3]. A shock was produced in the shock-stationary frame
of reference, and Bird’s [3] stability procedure was used to counteract the possible smearing
of the shock profiles arising from the slow random walk variation of the shock location. That
is, the cell network was shifted slightly upstream or downstream throughout the simulation,
to keep the total number of particles in the simulation approximately constant.

The initial conditions (upstreamρ1, T1,V1 and downstreamρ2, T2,V2) were set from
the Rankine–Hugoniot conditions, with a discontinuity between upstream and downstream
conditions atx = 0. The initial flow region extended over a distance−x1 < x < x2. At
each time step, before the particles were moved, new upstream particles were created, uni-
formly distributed in position over the region−x1− Vmax1t < x < −x1, whereVmax=
V1+ 3(2RT1)

1
2 was the ‘cut-off’ speed of any particle entering the flow from upstream.

The number density of these new particles wasn1 = ρ1/m, and their velocities were se-
lected from an equilibrium distribution with a mean ofV1 and a variance ofRT1. While the
particles were moved, those downstream could interact with a specularly reflecting surface,
initially at x = x2 and moving with the theoretical downstream flow speedV2. Before the
start of the next time step, the origin of thex-coordinate of all particles was moved a dis-
tanceV11t upstream, and then all particles with position outside the range−x1 ≤ x ≤ x2

were deleted. While the implementation of the downstream condition is the same as that
used previously [3, 9], the upstream implementation is slightly different from usual. Time-
averaged samples were taken after an elapsed simulation time of 5(x1+ x2)/V1. The cell
size was1x = 0.85λ2, whereλ2 = 2µ2/(ρ2c̄2) is the nominal mean free path behind the
shock. The decoupling interval was1t = 0.9λ2/c̄2.

Figure 12 shows the normalized density and temperature profiles for DSMC,ν-DSMC,
and the RTSM solution of the BGK equation. For clarity, only every second point in the

FIG. 12. Densityn̂ = (n− n2)/(n2 − n1) and temperaturêTj = (Tj − Tj,1)/(Tj,2 − Tj,1) vsx/λ1 in a normal
shock.M = 8,γ = 5/3,µ = µ1(T/T1)

0.81:−, DSMC;+, ν-DSMC (every second point omitted for clarity); – –,
RTSM (BGK equation).
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ν-DSMC results is shown. The origin of thex-axis for each set of results has been set at
the point wheren = (n1+ n2)/2. Bothν-DSMC and RTSM results differ from the DSMC
results, but theν-DSMC results are significantly better than those for RTSM. The location
and magnitude of the peakTx is well represented byν-DSMC, as is the location of theTy

profile; there is a slightly longer upstream precursor than DSMC for bothTx andTy and a
slightly shorter downstream tail. The overall agreement, however, is good and better than
the agreement between DSMC and the BGK solution from RTSM. The average deviation
of the ν-DSMC values from the DSMC values, over the interior of the shock (taken as
−10λ1 < x < 5λ1), is 1.7% of the downstream value for density, 2.8% forTx, and 1.4%
for Ty, which is consistent with the error of≈5% found in the relaxation and Couette flow
test cases. The corresponding values for the RTSM solution of the BGK equation are 1.7%,
6.0%, and 4.8%.

8. COMPUTATIONAL EFFORT

To calculate collisions only,ν-DSMC requires about 10% of the computational effort
of DSMC. The total computational effort forν-DSMC compared to DSMC depends on
what fraction of the total CPU time is consumed by the collision calculations. For very
small time steps1t/τ¿ 1, very few particles undergo a collision in any time step and
the overhead of establishing the list of collision partners and calculating the kinetic tem-
perature is significant. For the Couette flow, with1t/τ = 0.25,ν-DSMC required almost
80% of the CPU time required for DSMC. Larger values of1t are often used (in an effort
to reduce the computational load), and in that caseν-DSMC becomes relatively better. For
example, for the Couette flow, with1/τ = 0.50, the CPU requirements dropped to 50% of
that required for DSMC. For the plane shock case, the ratio of1t/τ was 0.9 downstream of
the shock, but 0.13 upstream, andν-DSMC required 60% of the CPU required by DSMC.
The codes were written in the Matlab programming language.

9. CONCLUSION

ν-DSMC is a new approximate simulation method for rarefied flows which takes ad-
vantage of the simplified collision probability of a Maxwell total collision cross-section,
modified by making the total collision cross-section a function of kinetic temperature. More
collisions are calculated forν-DSMC than for DSMC and, in this way, the theoretical vis-
cosity of each method is equal for near-equilibrium conditions. Any variation of viscosity
with temperature,µ=µ(T), can be achieved withν-DSMC. Because collision pairs can
be selected independently of the collision velocity, the collision calculations require less
computational effort.

It is natural to inquire if the new method, which was constructed from equilibrium or
near-equilibrium assumptions, works well in highly nonequilibrium conditions. Here the
test must be whether the new method produces results which are close to those produced
by DSMC. The collision phase ofany DSMC calculation consists of a zero-dimensional
relaxation calculation in every cell at every time step. If it could be shown that a method
produced the same velocity distribution as DSMC after any simulated relaxation time, for
any initial velocity distribution, the method would then necessarily produce the same results
as DSMC for any simulated flow. Hence the first test undertaken here was to compare the
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distribution of molecular speeds with that produced by DSMC for a number of different
initial velocity distributions, which were examples of extreme nonequilibrium conditions.
ν-DSMC produced a speed distribution remarkably similar to that produced by DSMC after
one mean collision time, whereas the solution of the BGK equation gave a very different
distribution, despite all methods giving the same relaxation rates for the kinetic temperatures.

The remaining test cases were designed to investigate the extent to which differences
in the relaxation process affected the flow properties in two realistic non-equilibrium flow
situations, high speed Couette (shear) flow and the interior of a strong shock. The results
were as might be expected from the relaxation tests, and from the theoretical knowledge
that the BGK equation predicts a Prandtl number of 1, rather than the correct value of 2/3.
It was found that the new method agreed with DSMC to within about 5% or less, while the
agreement for the RTSM solution of the BGK equation was no better than 10 or 15% in
most cases.

If an approximate method for rarefied flow is deemed sufficient, or necessary because of
CPU limitations, it is clearly better to useν-DSMC, rather than settle for a solution of the
BGK equation. The approximate simulation provided byν-DSMC requires computational
effort similar to that required to solve the BGK equation and yields superior results. Most
important is the fact that the Prandtl number is correct for the approximate method but not
for the solution of the BGK equation.

APPENDIX: SOME PROGRAMMING DETAILS

1. The collision pairs are preselected to facilitate parallel computation. Here I assume
that 1< νc1t < 2 so that more than one collision is required for some particles. Collisions
are calculated in stages so that no particle undergoes more than one collision at any stage.
The particles in the cell are arranged in a list, numberedj = 1, 2, . . . N. In one-dimensional
flows, adjacent particles in this list can be nearest neighbours, while for two- and three-
dimensional flows adjacent particles in this list can be near, if not necessarily nearest,
neighbours.

First collisions:The collision pairs are arranged as follows:

particle number 1 3 5 7 . . .

collides with | | | |
particle number 2 4 6 8 . . . .

In this stage each particle undergoes one collision, which corresponds to an elapsed time of
νc1t = 1. If νc1t < 1, not every collision pair from the above list need undergo a collision
and no second stage is required. In that case, collisions are calculated between pairs starting
from a randomly chosen initial position in the list.

Second collisions:The collision pairs are arranged as follows:

particle number 1 3 5 7 . . .

may collide with | | | |
particle number 4 2 8 6 . . . .

Collisions are calculated between pairs starting from a randomly chosen initial position in
this list. Note that for accuracy of the decoupling assumption,1t should be less thanτnom
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from (7) (i.e.,νc1t < π/2) so that two stages is all that is usually required. Ifνc1t > 2
(as may be allowed in some near-continuum calculations), the above procedure can be
extended to an arbitrary number of stages. However, in that case, after two or three col-
lisions/particle have been calculated, it might be just as good to use the relaxation time
method to account for the remaining collisions.

2. Following Bird [3], I have used the time-averaged number of particles in each cell,N̄,
when calculating the number density in (18) which determines the collision rate. The time-
averaged value is used to reduce statistical scatter in steady state solutions but it can have the
effect of introducing errors in the unsteady development of the flow. I have calculated the
time average using a decreasing weight on previous values. LetN̄ j−1 be the time-averaged
valued up to time stepj − 1. At time stepj , the past samples which went into calculating
N̄ are multiplied by a weighting factorw, wherew<1. Thus

sj = wsj−1+ 1 (A.1)

N̄ j = (N( j )+ wN̄ j−1)/sj . (A.2)

I have usedw = 0.95 in the work reported here.
3. The particles in any cell represent the much larger number of particles at that location

in the real gas and can be thought of as a sample selected from the true parent distribution.
The temperature of the parent distribution is related to the variance of each component of
velocity:

T = (Tx + Ty + Tz)/3

Tk=x,y,z =
N∑

j=1

(vk, j − v̄k)
2/(N R)

v̄k=x,y,z =
N∑

j=1

vk, j /N.

It is a standard result of statistical theory that the best estimate of the parent variance is

s2 =
N∑

j=1

(xj − x̄)2/(N − 1),

wheres is the sample standard deviation. Following Rovedaet al. [16], I have estimated
the kinetic temperature in a cell from the sample variance as

Tk=x,y,z =
N∑

j=1

(vk, j − v̄k)
2/((N − 1)R). (A.3)
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