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A new approximate simulation method for rarefied flow)SMC, is described
and tested by comparison with results from Bird’s direct simulation Monte—Carlo
(DSMC) method, and with a previously proposed ‘relaxation time’ simulation method
(RTSM) which solves the BGK equation. BothDSMC and RTSM execute about
twice (or more) as fast as DSMC. IRDSMC all collision pairs (amongst near neigh-
bours) are equally likely so the collision loops are suitable for parallel execution. In
order to reproducany desired viscosity law. = u(T) the collision rate must be
altered by making the total collision cross-section a function of the local kinetic
temperature. The approximate methods have been compared to DSMC in three test
cases: (1) simple relaxation calculations, (2) high speed Couette flow, and (3) the
plane normal shock problem. Both approximate methods produce the same relax-
ation rate as DSMC, but only the new method produces a nonequilibrium distribution
function similar to that for DSMC. For the Couette flowDSMC produces profiles
of flow velocity, density, and temperature which agree with DSMC results to within
3-5%, while the BGK solution produces temperatures which are up to 18% greater.
Similar results were found for the normal shock wav®SMC predicts the location
and size of the peak, temperature more accurately than does RTSM. The deviation
of the temperature profiles from the DSMC results are 2—-3 times greater for RTSM
than forv-DSMC. The conclusion from all test cases is clear: the incorrect Prandtl
number predicted by the BGK equation detracts from the usefulness of the BGK
equation as a model for rarefied flow; the new approximate simulation method is
just as fast as solving the BGK equation and gives results which are in much better
agreement with DSMC. (@ 2001 Academic Press
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1. INTRODUCTION

Bird's direct simulation Monte—Carlo (DSMC) method [3] is the standard computation
method for rarefied flows, where the governing equation is the Boltzmann equation.
DSMC the flow is represented by a large number of simulator particles, and the evolutior
the flow is tracked by calculating the motion of these particles and their collisions amon
themselves and with any boundaries. The simulation is advanced in time steps of dure
At which, for accuracy, should be less than the mean time between collisions. During e
time step the convection and collision calculations are decoupled. First the particles
moved in collisionless flight, according to their velocities. Next the particles are frozen
position and binary collisions are calculated for some of the particles. Although the collisi
partners are near neighbours, they are not necessarily within one particle diameter,
the relative orientation of the trajectories of the collision partners is ignored. Postcollisi
velocities are calculated for the given relative speed of collision and a randomly chosen si
impact parameters. The probability of collision for each collision pair, and the total numt
of collisions, reflect the theoretical probability and total collision rate for the particul:
collision cross-section used.

The history of the development of phenomenological collision models for DSMC sugge
that not every detail of the collision processes need be modeled accurately in order to ol
useful results. Recently [10], | proposed a particle simulation method in which the relaxat
time or Bhatnagar-Gross-Krook (BGK) approximation [1] to the collision term in the Bolt:
mann equation was used to simulate the effect of collisions, without calculating any ¢
lisions. This relaxation time simulation method (RTSM) is discussed briefly in the ne
section, along with similar but not identical methods proposed previously by Nanbu [:
14] and Montaneret al.[11]. Although these methods are computationally efficient com
pared to DSMC, they suffer from the same defect as does the BGK equation itself;
Prandtl number is unity, whereas the Boltzmann equation yields- 2/3.

The purpose of this paper is to present a new approximate simulation method for
Boltzmann equation that produces any desired viscosity law and the correct Prandtl nun
The new method, which | have termed ‘collision frequency DSMC)-@®SMC, uses the
particularly simple collision dynamics of the Maxwell-VHS model (that is, a Maxwel
total cross-section with hard sphere scattering) to make it computationally efficient. T
collision rate of the Maxwell-VHS model must be adjusted to produngelesired viscosity
law.

The new method has been tested and compared to both DSMC and the BGK simulz
method. The test cases considered are (a) a number of zero-dimensional relaxation cal
tions, (b) one-dimensional high-speed Couette flow, and (c) the calculation of the inter
structure of a plane normal shock. BattDSMC and RTSM run at twice the speed of
standard DSMC. The new method produces results within 3% of those produced by DS
for the shock structure and within 5% for the Couette flow, for Knudsen numbers rang
from Kn ~ 0.1 to Kn = 0.005.

2. RELAXATION TIME METHOD

The collision term of the Boltzmann equation describes how the distribution functic
f (v, t) for particle velocitiesy should change with time during the collision phase of a
simulation. According to the relaxation time (BGK) approximation the collision term ce
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be approximated as

onf n
|:—:| =nm(fe—f)=—(fe— 1), (1)
ot coll T
wheren is the number density of moleculesis a characteristic frequency, and= v is
the corresponding characteristic time. The exact solution of (1) is

(f(t) — fo) = (f(0) — fe) exp(—t'/7), )

where f¢ is the local Maxwell equilibrium distribution function anfd0) = f(t’ = 0) is
the distribution of particle velocities established by the convection phase of the simulati
before the effect of collisions is simulated. In other words, the distribution function relax
towards equilibrium with a time constant of which is the same for all velocities. After a
collision interval oft” = At, the distribution function according to (2) is

f(At) = (1 — exp(—At /1)) fe + exp(—At/7) f (0). A3)

Inthe relaxation time simulation method (RTSM) the collision phase of DSMCis replac
by a ‘redistribution phase’ in which a subset of the particles in the cell, a fraction

1—exp(—At/7)

of the total, are assigned new velocities characteristic of the local Maxwell distributi
for the subset [10]. The velocities of the remaining fraction of particles are unchang
The final distribution of particle velocities is a mixture of the initial distribution in the cel
and a statistical approximation of the final equilibrium distribution and is thus a statistic
(rather than an exact) representation of the BGK distribution of (3). This method has m:
features in common with Pullin’s equilibrium particle simulation method [15] in whiith
the particles in the cell were assigned new equilibrium velocities at each time step. Pull
method is the infinite collision rate limit of Bird’s DSMC, or the— 0O limit of the RTSM
method, for a given cell structure and time step.

Nanbu [13, 14] appears to be the first to have proposed a particle simulation method fol
BGK equation. A recent example is that of Montanetal.[11]. Both these methods differ
in some respects from RTSM. In each, new equilibrium velocities are assigned to a frac

VAL = At/t
of the particles in the cell, rather than the fraction
1—exp(—At/1) = At/t — (At/1)%/2! + (At/7)3/3! — - ..

Thus, these methods simulate a collision process (occurring at the collision) ratehich

the postcollision velocities conform to the local equilibrium distribution; complete equ

librium is established after one collision/particlat(= t), whereas the BGK equation

indicates that an infinite number of collisions/particle is required to establish equilibriun
In addition, both the earlier methods differ slightly from RTSM in that the new velocitie

are selected from an equilibrium distribution that has a mean and variance matching tf
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of the entire set of cell velocities at the beginning of the relaxation phase, rather than
subset which undergoes a relaxation. At first glance the earlier methods would appe:
be superior in that a larger sample is used to estimate the local equilibrium state, but th
not entirely clear, because in both methods, after the new velocities are selected, the
momentum and energy in the cell is not conserved. This nonconservation is accepte
part of Nanbu’s method, but it is worth noting that it was a similar nonconservation effe
in Nanbu’s simulation method for the Boltzmann equation [12], which appears to prodt
greater scatter in the results compared to DSMC, that led to the general abandonme
Nanbu’s method.

In Montanero’s method [11], the velocities after the relaxation are ‘adjusted’ in ord
to preserve total momentum and energy in the cell. It is not clear whether this adjustrr
is confined to the new velocities, in which case the method is identical in this respec
RTSM, or whether all the velocities in the cell are adjusted. If the latter, it is then not cle
that the final velocities after adjustment are a better representation of a mixture of the in
and equilibrium distributions than the final velocities for RTSM.

The Chapman—Enskog viscosity [6] for the relaxation time approximatierdsp R Tz,
from which

1z jz
T = pﬁ = T (4)
whereR = k/m is the ordinary gas constaiktjs Boltzmann’s constantn is the mass of
one moleculen is the number density, andis the mass density. The appropriate value o
the relaxation time in any cell can be determined froamydesired viscosity for the local
conditions in the cell. Thus

o 1 (Tiin)
T =

, 5
0 RTin ®)

whereT,, is the local kinetic temperature derived from the total thermal energy in any ce
This relaxation time is slightly larger than the nominal collision time often derived (
the nominal mean free path) from viscosity. Thus

Anom= 2/1/(pC) (6)
and
Thom= A/C = (w/Hu/(pRT), )
where
€= (8RT/xn)? )

is the mean thermal speed at equilibrium.

3. VHS

The most common collision model now used in DSMC calculations is the variable he
sphere model; the total collision cross-section varies with relative velocity in the sa
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manner as for molecules with an inverse power repulsive potential, but the scattering i
for hard spheres—all directions of the postcollision relative velocity are equally likely. Tt
first DSMC application of this combination of hard sphere scattering and a variable to
cross-section can be found in the papers of Borgnakke and Larsen [4, 5, 8], and later pa
by Erofeev and Perepukhov [7] and Bird [2]. The total cross-seetitor the VHS model,

as a function of relative collision speggis

o(9) = or (g /9)%, 9)

whereg; ando; are reference values of the collision speed and total cross-section, resg
tively, andv is a constant.
The Chapman—Enskog viscosity, with this total cross-section and isotropic scatterini

(3]
_ 15 (MKT)2 (4RT)V

= , 10
Y (10)

where, for later reference, the notation
Yy =TI(j —v)/x? (11)

has been used, wheie is the Gamma function. In other words, the viscosityuis=
tref(T/ Trer)®, where

1
w:E—f—U. (12)

3.1. Collision Frequency for VHS

The collision frequency for a total cross-sectionr= o (g) is given by
l)C = n<ga>’

where(go) denotes the average taken over all collisions. For the VHS cross-section (9)
have

Whs = Nor g2 (g4 2). (13)

Bird [3] gives the distribution ofj for equilibrium conditions, and witly, = (4R Te)?, the
equilibrium collision rate can be evaluated as

whs = 2YoN(4RT)Za; . (14)

From (10), also withg, = (4RT)%, we have

15 (mkT)?
= — 15
Or 8Y, m (15)
so that (14) becomes
157, pRT
whs= oo (16)

2Y, n
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The probability of collision for each collision pair must be proportional to the collisio
volume

go(g)At

so pairs of particles are accepted or rejected for collision based on this probability. Thi
particularly time consuming—not only must many collision pairs be sampled before one
accepted, but the collision loop is not suitable for parallel computation.

A special case is the ‘Maxwell VHS’ collision model, for which= 1/2 in (9), and the
total collision cross-section is

o =0or /0.

In this case all collision pairs in a cell are equally likely, so collisions can be calculat
without sampling the distribution of relative velocities. The Maxwell total cross-sectio
with hard sphere scattering, forms the basis of the new method proposed here. F
(16), withv = % the collision frequency for Maxwell-VHS scattering is

pRT
o

v=2 a7

4. THE PROPOSEDv METHOD

Inits basic form, the Maxwell-VHS collision model will produce a viscosity which varie
linearly with temperature (see (10) with= 1/2), but by making the reference cross-sectior
or afunction of kinetic temperature the Maxwell-VHS model can produce any variation
viscosity with temperature, at least for near equilibrium conditions. The theoretical va
of the Prandtl number iBr = 2/3, as for any VHS collision model.

This modified-VHS method, which | have called ‘collision rate DSMC"eDSMC,
can best be described with the following algorithm for its implementation (some furth
programming details are addressed in the Appendix):

e At each time step, calculate the kinetic temperafiyein each cell.
e Use (17) to calculate the mean collision frequency as

nk Ty
])c — 2 kin (18)
nw
for any assumed viscosity law, = w(Tkin)-
e If N is the number of particles in the cell, calculate
1
Neoll = EVCNAt (19)

collisions, treating all collision pairs as equally likely. UfAt > 1, some particles must
undergo more than one collision in the time step.

In the next two sections the results from the new simulation method are compared v
the results obtained using DSMC, with standard VHS scattering, and RTSM. In all t
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cases | have assumed a viscosity given by

T 0.81
M = HWref () s (20)

which corresponds to = 0.31. The theoretical viscosities of all models were matched.

5. RELAXATION CALCULATIONS

For five different nonequilibrium distributions of particle velocities in a single ‘cell,
simulations were performed to determine the relaxation rates of the different models. -
initial conditions are described below. All speeds are expressed in arbitrary units.

1. Half the simulator particles hag = 10; the remainder had, = —10. Thevy and
v, components were selected from an equilibrium distribution with a mean of 0 and a m
probable thermal speg@RT)z = 1/10.

2. As above, expect thay, as well asy, took values of:10.

3. Thewvy, component of velocity was selected from an equilibrium distribution with
mean of 0 and a most probable thermal speed/@D0. Thev, andv, components were
selected from an equilibrium distribution with a mean of 0 and a most probable thern
speed of 10.

4. Each component of velocity was selected from an equilibrium distribution with a me
velocity of 0, but with different kinetic temperatures for each component. The characteris
thermal speeds of the various components were 1, 2, and 4.

5. One fifth of the simulator particles were selected from an equilibrium state with
mean velocity of(20, 0, 0) and a characteristic thermal speed of 3. The remainder we
selected from an equilibrium distribution with a mean velocity of 0 and a characteris
thermal speed of 1. This roughly corresponds to a high-speed, high-temperature jet, m
with a low-temperature gas at rest.

For each initial nonequilibrium distribution the three components of kinetic temperatu
were different. It was found, as expected, that the difference between any two temp:
tures decayed with simulated elapsed time. Typical temperature histories from a relaxa
simulation are shown in Fig. 1. These curves could be well fit by an equation of the forr

T — Tk = (Tj — T)o €XP(—vnont/2),

wherevpom is the nominal collision frequency derived from viscosity,

4 pRT 4
Vnom:_p e:_&’ (21)
T TN
whereTe = (Tx + Ty + T,)/3 is the equilibrium temperature. The translational collisior
number is

Z == Vnomtc, (22)

wheret, is the decay time constant. The data in the range<0f < 2.0 was used in the
curve-fitting to determine.

For each of the five initial conditions, three estimate&ofere found, one from each
of the three possible pairing& — Ty, Ty — T;, T, — Tx. The median value of these three



FAST SIMULATION METHOD FOR RAREFIED FLOW 607

100 T T T T T

NORMALIZED TEMPERATURE

| R o
0 1 2 3 4 5 6
NORMALIZED TIME

FIG.1. Typical relaxation history. Temperature differens® = (T, — T,)/ T vs simulation timd = vnont.
Case 1, 80,000 particles:, DSMC; x, RTSM; +, v-DSMC.

estimates was taken as the best estimaté.dach simulation was performed for 20,000
simulator particles and was repeated 10 times. The mean and probable error bounds (
as twice the standard deviation) of the 10 simulations are shown in Table I. For RTS
the temperature difference should relax with a characteristicttimer, so the theoretical
collision number is

ZRTSM= Vnomt = 4/m = 1.273...,

which is within the error bounds of the data shown in the table.

Both RTSM andv-DSMC agree with the DSMC calculations, as far as the relaxatio
rate is concerned; in all cases, thevalues agree within the expected error of two standar
deviations. However, this says nothing about the details of the relaxation process.
example, the relaxation time method imposes an equally rapid approach to the equilibr
distribution for all velocity classes, which may not be the case for DSMCrabD&MC
where new velocities are generated by collisions. Figures 2 and 3 show the thermal s
distribution for case 5, after an elapsed time of one nominal collision interval. It can be s

TABLE |
Translational Collision Number Z = v,g,t. = 4p.t./ ()

Case 1 Case 2 Case 3 Case 4 Case 5

DSMC 132+0.07 132+010 127+014 129+0.06 123+0.10
RTSM 1284+0.04 129+0.08 127+0.08 129+0.08 128+0.08
v-DSMC  1264+0.02 1284+0.14 130+0.18 126+0.08 127+0.10
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FIG. 2. Thermal speed distributioi2RT)? f vsc(2RT.) 2, att = v-1 : +, »-DSMC: —, DSMC.
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FIG. 3. Thermal speed distributior(lZR'I;)% f vsc(2RTe)’%, att = vt : x, RTSM; —, DSMC.

nom*
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that the relaxation time (BGK) distribution is quite different from that for DSMC, wherea
the distribution for-DSMC is remarkably similar to that for DSMC.

For DSMC, the collisions are weighted towards greater values of collision speed, so €
collision is more effective in driving the distribution function towards equilibrium thatr
are Maxwell-VHS collisions. However, it follows from (16) and (17) that the simulatiol
collision frequency (collisions/simulator particle) fefDSMC is

AT(4-031) _

——— =~ 121
1512 — 0.31)

times the simulation collision frequency for DSMC. The effect of the greater number
‘less efficient’ collisions ob-DSMC is similar to the effect of the smaller number of ‘more
efficient’ collisions of DSMC.

Note that new velocities are generated at rates in the rli®:1:12 for RTSM,
DSMC, andv-DSMC. Note also that for both RTSM andDSMC every particle velocity
has an equal chance of being altered at any stage, whereas for DSMC larger velocities
a greater chance of being altered. Therefore, neither the different simulation collision r
nor the different distribution of relative velocities in collisions is sufficient to explain th
difference between the BGK relaxation time method evi2SMC and DSMC; the essential
difference appears to be that the new velocity compongnis, andv, are correlated when
generated by collisionsin DSMC aneDSMC (and the Boltzmann equation) but are not cor-
related when generated from the equilibrium distribution in RTSM (and the BGK equatiol

The CPU time used by RTSM andDSMC to calculate the number of collisions required
to simulate a given elapsed time is less than 10% of that taken by DSMC. The effec
speed-up of these approximate methods compared to DSMC, for a given problem, dep
on what fraction of the total CPU time is required to calculate the collisions themselv
and what is required for other tasks. For example, in these relaxation calculations,
temperature history was calculated as well as the distribution function, and both RTSM
v-DSMC required 27-32% of the CPU time required by DSMC.

6. COUETTE FLOW

The second test case was that of one-dimensional Couette flow between two flat pl
(both parallel to thex-axis) moving relative to each other with relative sp&gd The wall
temperature was held constanflat The distance between the plates (in yhdirection)
was H. An unsteady simulation was performed, with the gas between the plates initie
at rest with densityp; and temperatur&;. After an initial flow development time df =
10H/ (2RT1)% , successive samples were taken to obtain the time-averaged steady solu

Only half the flow was simulated. The origin of theaxis was at the plane of skew
symmetry where particles were ‘reflected’ withindy velocity components reversed. Atthe
planey = H/2 a diffusely reflecting, moving-wall boundary condition was implementec
The mearx-component of velocity of the diffusely reflected molecules Wgag2.

The flow is completely specified by the nondimensional param@&jgi'$; = 1 (the wall
temperatureratio, = Vw/(ZRTw)% = 2.67 (the wall speed ratio), aritin; = A;/H (the
Knudsen number), wherg is the nominal mean free path of (6). In all simulations the cel
size wasAy < 11/2. A fixed time step ofAt = 7;/4 was used, wherg is the relaxation
time of (4) evaluated for the initial conditions.
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FIG. 4. Couette flowKn = 0.005. Normalized velocity profiles, (3 R‘I’w)% for three simulation methods:
—, DSMC; x, RTSM; +, v-DSMC. 7; /At = 4. 100 cells.; /Ay = 2. For clarity, only ¥3 of points shown.

Figures 4 and 5 show the normalized velocity and temperature profiles for the th
simulation methods for the lowest Knudsen number reported here, which is 0.005.
The flow velocity (1) profiles for all methods are similar. The velocities calculated witt
v-DSMC are intermediate between those for DSMC and RTSM. The agreement among
velocity profiles for the three methods was similar for all Knudsen numbers consider:
The temperature profile is a sensitive indicator of the differences between the methods.
temperatures for-DSMC are within 1% of the DSMC values, while those calculated witt
RTSM arex~34% greater. Since the work input to the flow is approximately the same for
three models, the rate of heat transfer from the flow to the moving wall should also be
same in the steady state. Since the temperature gradient is greater for RTSM, the coeffi
of heat conduction is smaller, as expected from its larger Prandtl number. Figures 6 ar
show the same effect for Knudsen number&of = 0.05 andKn = 0.1, respectively. The
v-DSMC profiles are very close to those for DSMC, while the RTSM temperature profil
are quite different.

The mean flow temperature for all methods and all Knudsen numbers is shown in Fig
It is mildly surprising that the maximum difference betwae®SMC and DSMC (5% in
the temperature values) occurs for the intermediate Knudsen numkKer ef 0.05, rather
than for the most rarefied casekbh = 0.1 Also, the difference between the RTSM (BGK)
temperature and the DSMC temperature decreases as the Knudsen number increase:

Although they are not shown here, the density profiles for all methods reflect the differ:
temperature profiles; the ‘pressugeR T was approximately constant to within 3% across
the flow for all cases. The mean valuesedf/(p1T1) for DSMC were~x1.60, 1.65, 1.86,
and 205 for Kn = 0.005,0.01, 0.05, and 0.1, respectively. TheDSMC pressure was
0.2% greater than the DSMC pressure Kon = 0.005, and it was 3%, 5%, and 3% less
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FIG. 5. Couette flowKn = 0.005. Normalized temperature profil@y T, for three simulation methods:
—, DSMC; x, RTSM; +, v-DSMC. t; /At = 4. 100 cells;r;/Ay = 2. For clarity, only ¥3 of points shown.
The average ratio of the DSMC temperatures to the DSMC temperatures is 0.99.
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FIG. 6. Couette flowKn = 0.05. Normalized temperature profil@s/ T, for three simulation methods:
—, DSMC; x, RTSM; +, v-DSMC. 7, /At = 4. 20 cells;1,/Ay = 2. The average ratio of the-DSMC tem-
peratures to the DSMC temperatures is (496.01.
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FIG. 7. Couette flowKn = 0.1. Normalized temperature profileg/ T, for three simulation methods:
—, DSMC; x, RTSM; +, v-DSMC. t;/At = 4. 20 cells;1,/Ay = 4. The average ratio of theeDSMC tem-
peratures to the DSMC temperatures is (49@.02.
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FIG. 8. Mean temperaturef(/Tl) for Couette flow withS, = 5.34,T,,/T; = 1: 0o, DSMC; x, RTSM; +,
v-DSMC.
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FIG.9. Approach to equilibriumT,/T — 1, mean value for a§) for Couette flow withS, = 5.34,T,, /T, =
1: 0, DSMC; x, RTSM; +, v-DSMC.

for Kn=0.01, 0.05 and 0.1. For RTSM, the pressures were larger than for DSMC by 28
18%, 13%, and 14%, respectively.

Figure 9 shows the approach to equilibrium for the different methods, as measurec
the average value of/ T, across the flow. As expectel — T as the Knudsen num-
ber decreases, for all three methods. The relaxation time method shows a slightly gre
departure from equilibrium than do the other two methods.

The velocity distribution functions in the cell closest to the plane of skew symmetry f
v-DSMC and DSMC are compared in Figs. 10 and 11. The figures also show the theoret
equilibrium distribution

fe= (2rRT) % exp[—cZ/(2RTY],

wherec, = vy — vy IS the x-component of thermal velocity anf, is the x-component
of kinetic temperature (from the DSMC results). The DSMC results are very close to t
theoretical distribution fokK n = 0.01, but a small departure from equilibrium can be seel
for Kn = 0.1. Itis clear that the DSMC andDSMC results agree very closely for both the
low Kn = 0.01 and highKn = 0.1 Knudsen numbers. A n = 0.005, the distributions
for DSMC andv-DSMC (not shown) are virtually indistinguishable.

7. THE PLANE NORMAL SHOCK

As afinaltest case, the structure of a plane shock has been calculated by BE3EIC,
and RTSM. The upstream Mach numbeksg = 8 and, as in all calculations presented here
the theoretical viscosity varied 388, The conditions correspond to the test case, ‘stron
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FIG. 10. Distribution of x-component of thermal velocity2RT1)% fvs cx(ZRTl)’%, wherec, = vy, — vy
and f (c,) is the thermal velocity distribution functiotK n = 0.01 andy/H = 2.5 x 1073. The solid line is the
theoretical distribution for equilibrium at temperatdrg T; = 1.953 (DSMC value). o, DSMC#, v-DSMC.
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FIG. 11. Distribution of x-component of thermal veIocitYZRTl)% f vs cx(2RT1)’%, wherec, = vy — vy
and f (c,) is the thermal velocity distribution functioin = 0.1 andy/H = 1.25 x 1072. The solid line is the
theoretical distribution for equilibrium at temperatdrg T; = 2.643 (DSMC value). o, DSMC#, v-DSMC.
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shock in argon,” presented by Bird [3]. A shock was produced in the shock-stationary fra
of reference, and Bird’s [3] stability procedure was used to counteract the possible smee
of the shock profiles arising from the slow random walk variation of the shock location. Tt
is, the cell network was shifted slightly upstream or downstream throughout the simulati
to keep the total number of particles in the simulation approximately constant.

The initial conditions (upstream;, T1, Vi and downstreamp,, T, V,) were set from
the Rankine—Hugoniot conditions, with a discontinuity between upstream and downstre
conditions atx = 0. The initial flow region extended over a distaneg; < X < Xp. At
each time step, before the particles were moved, new upstream particles were created
formly distributed in position over the regionx; — VmaxAt < X < —X1, whereVpax =
Vi + 3(2RT1)% was the ‘cut-off’ speed of any particle entering the flow from upstrean
The number density of these new particles was= p;/m, and their velocities were se-
lected from an equilibrium distribution with a mean\gfand a variance R T;. While the
particles were moved, those downstream could interact with a specularly reflecting surf
initially at x = x and moving with the theoretical downstream flow sp¥edBefore the
start of the next time step, the origin of tkecoordinate of all particles was moved a dis-
tanceV; At upstream, and then all particles with position outside the range< x < X
were deleted. While the implementation of the downstream condition is the same as
used previously [3, 9], the upstream implementation is slightly different from usual. Tim
averaged samples were taken after an elapsed simulation tim{@;0f %,)/ V1. The cell
size wasAXx = 0.85\,, wherei, = 2u,/(02C;) is the nominal mean free path behind the
shock. The decoupling interval wag = 0.91,/c;.

Figure 12 shows the normalized density and temperature profiles for DENdSMC,
and the RTSM solution of the BGK equation. For clarity, only every second point in tl

NORMALIZED VALUE

-0.2 1 1 ) 1 1 1
-20 -15 -10 -5 0 5 10

UPSTREAM MEAN FREE PATHS

FIG.12. Densityd = (n —n,)/(n, —n;) and temperatur@J = (T; = T;0)/(Tj2 — Tj1) vsx/As inanormal
shock.M = 8,y = 5/3, u = u1(T/T1)®: —, DSMC; +, v-DSMC (every second point omitted for clarity); ——,
RTSM (BGK equation).
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v-DSMC results is shown. The origin of theaxis for each set of results has been set a
the point wheren = (n; + ny)/2. Bothv-DSMC and RTSM results differ from the DSMC
results, but the-DSMC results are significantly better than those for RTSM. The locatio
and magnitude of the pedk is well represented by-DSMC, as is the location of th§,
profile; there is a slightly longer upstream precursor than DSMC for Bend T, and a
slightly shorter downstream tail. The overall agreement, however, is good and better t
the agreement between DSMC and the BGK solution from RTSM. The average deviat
of the v-DSMC values from the DSMC values, over the interior of the shock (taken «
—100; < X < 511), is 1.7% of the downstream value for density, 2.8% Terand 1.4%
for Ty, which is consistent with the error 6f5% found in the relaxation and Couette flow
test cases. The corresponding values for the RTSM solution of the BGK equation are 1.
6.0%, and 4.8%.

8. COMPUTATIONAL EFFORT

To calculate collisions only-DSMC requires about 10% of the computational effort
of DSMC. The total computational effort for-DSMC compared to DSMC depends on
what fraction of the total CPU time is consumed by the collision calculations. For ve
small time stepsAt/t « 1, very few particles undergo a collision in any time step anc
the overhead of establishing the list of collision partners and calculating the kinetic te
perature is significant. For the Couette flow, with/r = 0.25, v-DSMC required almost
80% of the CPU time required for DSMC. Larger values\dfare often used (in an effort
to reduce the computational load), and in that caf¥$SMC becomes relatively better. For
example, for the Couette flow, with /T = 0.50, the CPU requirements dropped to 50% of
that required for DSMC. For the plane shock case, the ratictgt was 0.9 downstream of
the shock, but 0.13 upstream, andDSMC required 60% of the CPU required by DSMC.
The codes were written in the Matlab programming language.

9. CONCLUSION

v-DSMC is a new approximate simulation method for rarefied flows which takes a
vantage of the simplified collision probability of a Maxwell total collision cross-sectior
modified by making the total collision cross-section a function of kinetic temperature. Mc
collisions are calculated far-DSMC than for DSMC and, in this way, the theoretical vis-
cosity of each method is equal for near-equilibrium conditions. Any variation of viscosi
with temperaturep = u(T), can be achieved with-DSMC. Because collision pairs can
be selected independently of the collision velocity, the collision calculations require le
computational effort.

It is natural to inquire if the new method, which was constructed from equilibrium c
near-equilibrium assumptions, works well in highly nonequilibrium conditions. Here tt
test must be whether the new method produces results which are close to those prod
by DSMC. The collision phase @ny DSMC calculation consists of a zero-dimensional
relaxation calculation in every cell at every time step. If it could be shown that a meth
produced the same velocity distribution as DSMC after any simulated relaxation time,
any initial velocity distribution, the method would then necessarily produce the same res|
as DSMC for any simulated flow. Hence the first test undertaken here was to compare
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distribution of molecular speeds with that produced by DSMC for a number of differe
initial velocity distributions, which were examples of extreme nonequilibrium condition
v-DSMC produced a speed distribution remarkably similar to that produced by DSMC af
one mean collision time, whereas the solution of the BGK equation gave a very differ
distribution, despite all methods giving the same relaxation rates for the kinetic temperatu

The remaining test cases were designed to investigate the extent to which differel
in the relaxation process affected the flow properties in two realistic non-equilibrium flc
situations, high speed Couette (shear) flow and the interior of a strong shock. The re:
were as might be expected from the relaxation tests, and from the theoretical knowle
that the BGK equation predicts a Prandtl number of 1, rather than the correct vali# of 2
It was found that the new method agreed with DSMC to within about 5% or less, while t
agreement for the RTSM solution of the BGK equation was no better than 10 or 15%
most cases.

If an approximate method for rarefied flow is deemed sufficient, or necessary becaus
CPU limitations, it is clearly better to useDSMC, rather than settle for a solution of the
BGK equation. The approximate simulation providedvb SMC requires computational
effort similar to that required to solve the BGK equation and yields superior results. M
important is the fact that the Prandtl number is correct for the approximate method but
for the solution of the BGK equation.

APPENDIX: SOME PROGRAMMING DETAILS

1. The collision pairs are preselected to facilitate parallel computation. Here | assu
that 1< v, At < 2 so that more than one collision is required for some particles. Collisior
are calculated in stages so that no particle undergoes more than one collision at any s
The particles in the cell are arranged in a list, numbegredl, 2, . .. N. In one-dimensional
flows, adjacent particles in this list can be nearest neighbours, while for two- and thr
dimensional flows adjacent particles in this list can be near, if not necessarily near
neighbours.

First collisions: The collision pairs are arranged as follows:

particle number 1 3 5 7
collides with [
particle number 2 4 6 8

In this stage each particle undergoes one collision, which corresponds to an elapsed tin
vcAt = 1. If vicAt < 1, not every collision pair from the above list need undergo a collisio
and no second stage is required. In that case, collisions are calculated between pairs st
from a randomly chosen initial position in the list.

Second collisionsThe collision pairs are arranged as follows:

particle number 1 3 5 7

may collide with | | | |

particle number 4 2 8 6

Collisions are calculated between pairs starting from a randomly chosen initial positior
this list. Note that for accuracy of the decoupling assumptixtinshould be less thathom
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from (7) (i.e.,vcAt < 7 /2) so that two stages is all that is usually required;c ikt > 2
(as may be allowed in some near-continuum calculations), the above procedure cal
extended to an arbitrary number of stages. However, in that case, after two or three
lisions/particle have been calculated, it might be just as good to use the relaxation t
method to account for the remaining collisions.

2. Following Bird [3], | have used the time-averaged number of particles in eaciNcell,
when calculating the number density in (18) which determines the collision rate. The tin
averaged value is used to reduce statistical scatter in steady state solutions but it can ha
effect of introducing errors in the unsteady development of the flow. | have calculated
time average using a decreasing weight on previous value$\_lj_qtbe the time-averaged
valued up to time step — 1. At time stepj, the past samples which went into calculating
N are multiplied by a weighting factar, wherew < 1. Thus

S =wsj_1+1 (A1)
Nj = (N() +wNj_1)/s;. (A2)

| have usedv = 0.95 in the work reported here.

3. The patrticles in any cell represent the much larger number of particles at that locat
in the real gas and can be thought of as a sample selected from the true parent distribu
The temperature of the parent distribution is related to the variance of each componer
velocity:

T ZZ(R'+T&4-Tﬂ/3

N
Tiexye = 3 _(kj — 00?/(NR)
j=1

N
Vk=xy,z = E vk,j/N.

j=1
It is a standard result of statistical theory that the best estimate of the parent variance i
N
=) (x; = X%/(N -1,
j=1

wheres is the sample standard deviation. Following Rovetal. [16], | have estimated
the kinetic temperature in a cell from the sample variance as

N
Tiexyz = Y _(kj — 0%/ (N = DR). (A.3)
j=1
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